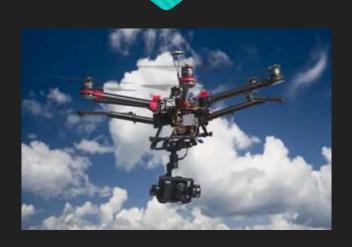
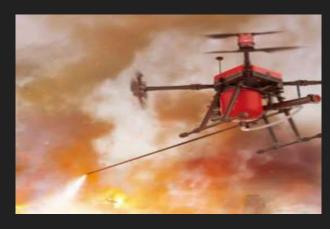
Система автоматического управления квадрокоптером


Студентка: Ли Сыци

Группа: ПОД-171Т

Кафедра: ИУ-1

Научный руководитель: Карпунин Александр Алексаедрович


Актуальность темы

позиция

скорость

траектория

Система автоматического управления квадрокоптером

Цель

Разработка и исследование системы управления

квадрокоптером.

Задачи

Дать определение квадрокоптера, рассмотреть классификацию, описать устройство квадрокоптера, указать какие задачи он выпоняет.

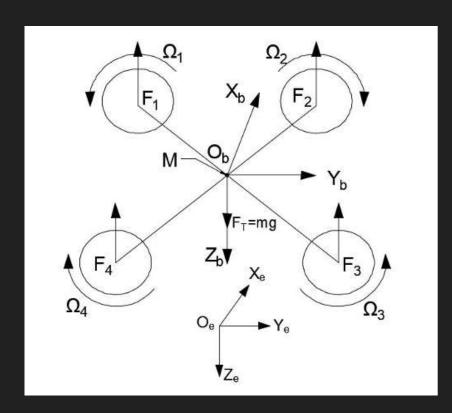
Исследовать поведение системы по полученной модели.

Разработать математические модели динамики квадрокоптера.

Обработать реальные экспериментальные данные.

Рассмотреть и создать систему управления квадрокоптером в MATLAB, указать её особенности.

Сделать выводы.


Методы исследования

1 математическое моделирование

2 теория автоматического управления

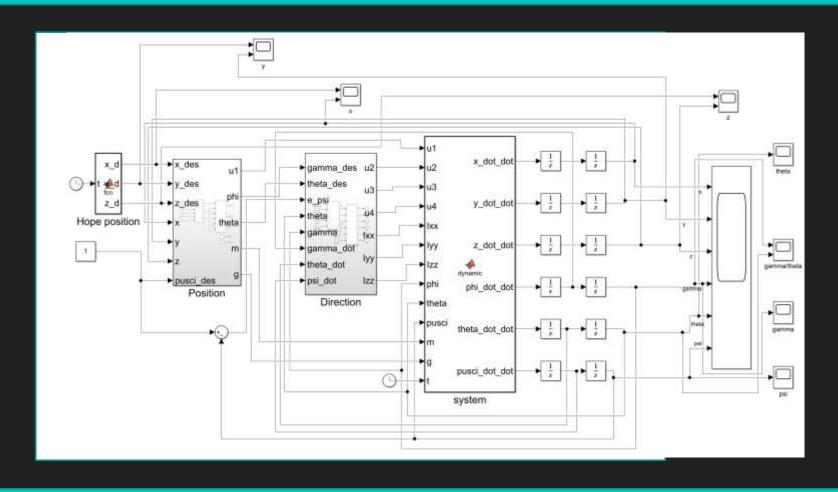
В работе используется экспериментальное подтверждение.

Оработе

Система координат квадрокоптера

Параметры квадрокоптера

Параметр	Обозначение	Значение	Единица измерения
Масса квадрокоптера	m	1	кг
Длина рамы	L	0.225	м
Момент инерции вокруг оси Х	I _{xx}	1.466 * 10 ⁻²	кг м ²
Момент инерции вокруг оси Ү	l _{yy}	1.466 * 10 ⁻²	кг м ²
Момент инерции вокруг оси Z	I _{zz}	2.848 * 10 ⁻²	кг м ²
Коэффициент осевой нагрузки	C _T	1.201 * 10 ⁻⁵	H/(рад/с) ²
Коэффициент крутящего момента	Ca	1.606 * 10 ⁻⁷	Нм/(рад/с)²
Коэффициент сопротивления воздуха	C _D	6.579 * 10 ⁻²	H/(м/c) ²


Математическая модель динамики квадрокоптера

$$\begin{bmatrix} \ddot{\frac{U_1}{m}}(\cos\psi\sin\theta\cos\phi + \sin\psi\sin\phi) \\ \frac{U_1}{m}(\sin\psi\sin\theta\cos\phi - \cos\psi\sin\phi) \\ -\frac{U_1}{m}\cos\phi\cos\theta + g \\ \frac{\ddot{z}}{\ddot{\varphi}} \\ \ddot{\ddot{\varphi}} \\ \ddot{\ddot{\psi}} \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2}LU_2 + (I_{yy} - I_{zz})\dot{\theta}\dot{\psi} \\ \frac{I_{xx}}{I_{yy}} \\ \frac{[\sqrt{2}}{2}LU_3 + (I_{zz} - I_{xx})\dot{\phi}\dot{\psi}]}{I_{yy}} \\ \frac{[U_4 + (I_{xx} - I_{yy})\dot{\theta}\dot{\phi}]}{I_{zz}} \end{bmatrix}$$

$$\sin\theta pprox \theta, \sin\varphi pprox \varphi, \cos\theta pprox 1, \cos\varphi pprox 1$$
 $\psi = \psi_{\mathbb{R}}$, где $\psi_{\mathbb{R}}$ — желаемый угол рысканья. $\Sigma_{i=1}^4 \, C_T \Omega_i^2 = \mathrm{mg}$
$$\begin{cases} \ddot{x}_{\mathbb{R}} = \, g(\theta cos\psi_{\mathbb{R}} + \varphi sin\psi_{\mathbb{R}}) \\ \ddot{y}_{\mathbb{R}} = \, g(\theta sin\psi_{\mathbb{R}} - \varphi cos\psi_{\mathbb{R}}) \\ \ddot{z}_{\mathbb{R}} = \, \frac{-8C_T\Omega_h}{m} \Delta\Omega_F \end{cases}$$

Модель движения квадрокоптера в MATLAB Simulink

Вход системы — блок «Hope position»;
Внешний контур — блок «Position»;
Внутренний контур — блок «Direction»;
Модель кинематики и динамики квадрокоптера — блок «System».

Модель квадрокоптера в MATLAB Simulink

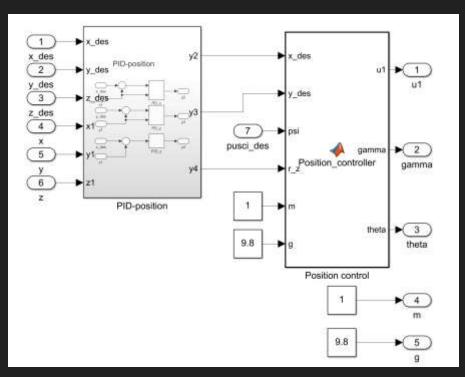
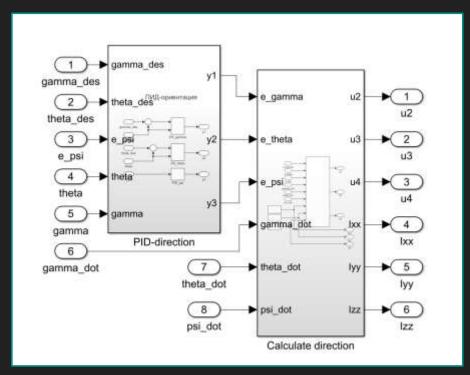
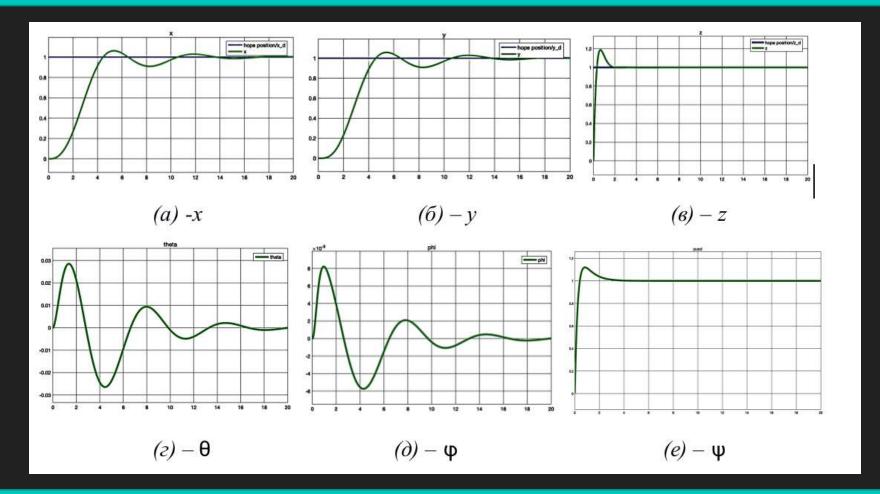


Рис. 2. Контур управления положением квадрокоптера




Рис. 3. Контур управления ориентацией квадрокоптера

Коэффициенты ПИДрегуляторов

Коэффициенты ПИД-регуляторов

Регулятор	K_{P}	K_{I}	K_D
X	0.35	0	1
Y	0.35	0	1
Z	10	0.1	5
θ	4.5	0	4.5
φ	4.5	0	4.5
ψ	5	0.1	5

Результаты

Результаты

Квадрокоптер с синтезированными ПИДрегуляторами может точно достичь желаемого положения и стабильно зависать в этом положении. Таким образом, цель данной работы достигнута.


Программа

```
function [x_dot_dot,y_dot_dot,z_dot_dot,phi_dot_dot...
function [u2,u3,u4] = attitude_controller(e_phi,e_theta...
                                                                ,theta_dot_dot,pusci_dot_dot]=dynamic(u1,u2,u3,u4...
    ,e_pusci,phi_dot,theta_dot,pusci_dot,Ixx,Iyy,Izz)
                                                                ,Ixx,Iyy,Izz,phi,theta,pusci,m,g,t)
1=0.225
u2=2^0.5/l*(Ixx*e phi-(Iyy-Izz)*theta dot*pusci dot);
                                                           1=0.225
u3=2^0.5/l*(Iyy*e_theta-(Izz-Ixx)*phi_dot*pusci_dot);
u4=Izz*e pusci;
                                                           x dot dot=u1/m*(sin(pusci)*phi+cos(pusci)*theta);
end
                                                           y_dot_dot=u1/m*(-cos(pusci)*phi+theta*sin(pusci));
                                                           z_dot_dot=g-u1/m*cos(theta)*cos(phi);
                                                           phi dot dot=2^{-0.5}*l*u2/Ixx;
                                                           theta_dot_dot=2^{-0.5}*l*u3/Iyy;
                                                           pusci dot dot=u4/Izz;
                                                           end
```

Практическое использование результатов работы

Изучение пространственного и автономного управления и группового поведения квадрокоптера.

Литература

- 1. Костюк А.С. Особенности аэрофотосъемки со сверхлегких беспилотных летательных аппаратов // Омский научный вестник. 2011. № 1. С. 236-240.
- 2.Chen Tingyu. Modeling and control of quadrangular mirror and PID controller // Electronic world.—2018.— №21— C. 5-7

Спасибо за внимание!

——МГТУ им.Н.Э.Баумана—